EFFECT OF NPK FERTILIZERS ON GROWTH, YIELD AND YIELD ATTRIBUTES OF OKRA (*ABELMOSCHUS ESCULENTUS* (L.) MOENCH.)

MA RAHMAN* AND FERDOUSI AKTER

Department of Botany, University of Chittagong, Chittagong-4331, Bangladesh

Key words: Okra, NPK fertilizers, Growth, Yield

Abstract

Five different doses of NPK fertilizers, *viz*. T_0 (0N0P0K), T_1 (1N1P1K), T_2 (0N1P1K), T_3 (1N0P1K) and T_4 (1N1P0K) were applied and the growth, yield and yield attributes of okra were studied. The length of main stem, number of nodes and leaves were maximum at T_1 . The fresh weight, length, circumference, diameter per fruit and yield per plant were the highest at T_1 . The carotenoid content of leaves and vitamin C contents of fruits were maximum at T_1 . The total NPK concentration of both plants and fruits were the highest at T_3 .

Introduction

Okra is a popular vegetable crop grown from seed. It is mainly cultivated in *Kharif* season in Bangladesh. Okra is a poor yielder of about 3.0 t/ha (BBS 2000), which is very low compared to other neighboring country like India (6.12 t/ha) and other developing countries (7.12 t/ha) of the world (Yamaguchi 1998).

The low yield of okra in Bangladesh may be due to improper use of fertilizers and poor management practices. Some workers used NPK fertilizers for the increase of growth, yield and yield attributes of okra. Significant increase in the growth and yield of okra was observed after the application of N and or NPK (Katung *et al.* 1996). Firoz (2009) reported that the highest yield (16.73 t/ha) was obtained after the application of 100 kg N/ha which was statistically identical to 120 kg N/ha. He also obtained the highest yield (15.77 t/ha) from 120 kg P₂O₅/ha. Philip *et al.* (2010) reported that spacing of 90 × 30 cm and application of NPK fertilizers 150 kg/ha (22.5 kg N, 22.5 kg P₂O₅ and 22.5 kg K₂O₅) gave the highest yield of okra.

Reports on the effect of NPK fertilizers on the growth, yield and yield components of okra are rare in Bangladesh. Hence, in the present investigation the effect of different doses of NPK fertilizers on growth, yield and yield attributes of okra was studied.

Materials and Methods

Seeds of okra (*Abelmoschus esculentus* (L.) Moench.) var. ARKA ANAMIKA were collected from local nursery and sown in the experimental field. The field was ploughed, cross ploughed and leveled properly and divided into 15 plots, each measuring 2×1 m with 50 cm space between two plots. Each plot contained three rows and every row contained four hills. The spacing between row to row and hill to hill was 60 cm and 45 cm, respectively. The field design was maintained trireplicated Randomized Complete Block Design (RCBD).

Different doses of fertilizers applied per plot are as follows: T_0 (0N0P0K) - two kg cow-dung were applied during land preparation. T_1 (1N1P1K) - (a) 2 kg cow-dung, 65 g urea, 150 g TSP and 105 g MP were applied during land preparation, (b) 65 g urea were applied after 25 days of sowing. T_2 (0N1P1K) - 2 kg cow-dung, 150 g TSP and 105 g MP were applied during land preparation, T_3 (1N0P1K) - (a) 2 kg cow-dung, 65 g urea and 105 g MP were applied during land

^{*}Author for correspondence: <arahmanbot42@yahoo.com>.

preparation, (b) 65 g urea were applied after 25 days of sowing. T_4 (1N1P0K) - (a) 2 kg cow-dung, 65 g urea and 150 g TSP were applied during land preparation, (b) 65 g urea were applied after 25 days of sowing.

Two seeds were sown per hill. After germination one uniform seedling was kept in each hill and rests were thinned out. Total number of seedlings per plot was 12. Watering, weeding, mulching and other cultural practices were done as and when required. The length of main stem, number of nodes and leaves and number of branches were recorded at the opening of first flower and continued at 15 days interval till final harvest. The final data (addition of all counts) were used in the tables. The fruits of okra of all the treatments were harvested at marketable stage. Before harvesting the number of fruits per plant was recorded. The number of fruits per plant, fresh weight, length, circumference and diameter of fruits of each treatment were recorded just immediately after harvest. The yield per plant was calculated by multiplying the number of fruits per plant and fresh weight per fruit.

The plants were finally harvested after five months of sowing. After harvesting the fresh weight of whole plant (stem and leaf) was weighed. Then the plants were chopped and dried in an oven at 65° C till a constant dry weight was obtained. For chemical analysis 100 g of fresh plant (stem and leaf) and fruit samples were dried in an oven at 65° C. Then ground in an electric grinder and made into powder (60 meshed sieves) and stored in air-tight containers. Dried powder of plant and fruit samples was digested following modified micro-Kjeldahl method. N, P and K were determined as described by Jackson (1973). Chlorophyll *a*, *b* and carotenoid contents of fresh leaves of okra at the onset of flowering were determined spectrophotometically and calculated following Wettstein (1957). Vitamin C of fresh fruit sample was determined following Pleshkov (1976).

Results and Discussion

The length, number of branches and length of branches increased significantly in almost all the treatments from T_0 and the highest values were in T_1 , T_4 and T_1 , respectively (Table 1). The number of nodes and leaves of main vine and branches and total number of nodes and leaves per plant also increased significantly in all the treatments from T_0 and maximum values were in T_1 , T_3 and T_1 , respectively (Table 1).

Treatments	Height/	Number of	Length/	Number of nodes and leaves/plant			
	plant (cm)	branches/plant	branch (cm)	Main stem	Branch	Total	
T ₀	22.83a	1.00a	13.67a	7.67a	5.67a	13.34a	
T_1	63.11e	2.33bc	32.33d	18.00d	11.00b	29.00c	
T_2	40.00b	2.00b	15.00b	10.67b	12.33c	23.00b	
T_3	47.00d	2.67cd	16.25b	10.33b	13.00c	23.33b	
T_4	45.03c	3.00d	23.00c	12.33c	10.00b	22.33b	

Table 1. Effect of different doses of NPK fertilizers on length per plant, number of branches per plant, length per branch, and number of nodes and leaves per plant of okra.

Mean in a column followed by same letter do not differ significantly at 5% level.

The number of fruits per plant increased highly significantly in all the treatments from T_0 and the highest number of fruits per plant was found in T_2 . The fresh weight, length, circumference, diameter of fruit and yield per plant also increased significantly in all the treatments from T_0 and maximum values were obtained in T_1 for all the cases (Table 2). The yield per plant increased with the increase of fresh weight per fruit and a significant positive correlation (r = 0.91) was found between fresh weight per fruit and yield per plant. The increase of yield of okra of the present investigation due to N application was found consistent with the finding of Katung et al. (1996), Hooda et al. (1980), Mani and Ramanathan (1980), Majanbu et al. (1985) and Singh (1995). The increase of vield of okra due to P and NPK application of the investigation corroborates other studies (Sharma and Yadev 1976, Firoz 2009). The combined effect of NPK fertilizers for the increase of yield of okra in the present investigation was found consistent with the findings of Ahmed and Tullock-Reid (1986) and Philip et al. (2010).

Table 2. Effec	t of different	t doses of NPF	K fertilizers	on number	of fruits	per plant	, fresh	weight	per
fruit, leng	th, circumfer	ence, diameter	r per fruit ar	ıd yield per	plant of o	okra.			

Treatments	Number of fruits/ plant	Fresh wt./ fruit (g)	Length/ fruit (cm)	Circumference/ fruit (cm)	Diameter/ fruit (cm)	Yield/ plant (g)
T ₀	1.80a	5.87a	7.15a	4.20a	1.30a	10.56a
T_1	6.00d	15.20e	15.20e	6.00e	1.90b	91.20d
T_2	8.00e	11.59d	11.34d	5.10d	1.67ab	92.72d
T_3	5.00c	10.10c	9.48c	4.80c	1.53ab	50.50c
T_4	4.00b	9.89b	8.53b	4.50b	1.47a	39.56b

Mean in a column followed by same letter do not differ significantly at 5% level.

The chlorophyll a content of leaves was significantly higher in all the treatments from T_0 except T₂. The highest value was at T₄ followed by T₁, T₃, T₂ and T₀. The chlorophyll b contents of leaves increased significantly in all the treatments except T_3 and maximum value was in T_4 (Table 3). Carotenoid contents also increased significantly in all the treatments and the highest carotenoid content was in T_1 . The total pigment content was obtained maximum in T_4 followed by T_1 , T_3 , T_2 and T_0 (Table 3).

Treatments Chlorophyll a Chlorophyll b Carotenoid Total pigment (mg/g)(mg/g)(mg/g)(mg/g)T₀ 3.06a 1.20a 1.91b 6.17a T_1 4.21c 1.89c 8.38c 2.28d T_2 3.81b 1.35b 6.87a 1.71a **T**₃ 1.29b 1.87b 4.15c 7.31b T_4 4.51d 1.90c 2.06c 8.47c

Table 3. Effect of different doses of NPK fertilizers on chlorophyll a, b, carotenoids and total pigment contents of fresh leaves of okra at the onset of flowering.

Mean in a column followed by same letter do not differ significantly at 5% level.

The NPK concentration of plants and fruits were found different in different treatments of the present investigation. The N concentration of both plants and fruits were found significantly higher in all the treatments from T_0 and the maximum value was obtained in T_3 . The P concentration of plants also increased significantly in all the treatments and the highest P concentration was in T_1 but the P concentration of fruits was found maximum in T_3 and the lowest value was in T₄. The K concentration of plants was found significantly higher in all the treatments except in T_4 . The K concentration of fruits though found higher in most of the treatments from control but the differences were not significant. The total NPK concentration of plants and fruits increased significantly from T_0 in all the treatments and highest values were in T_3 (Table 4).

The vitamin C contents of fruits were not found similar in the different treatments. The maximum vitamin C content was obtained in T_1 (26.4 mg/100g) followed by T_2 , T_3 , T_4 and T_0 (Table 4).

Table 4. Effect of different doses of NPK	fertilizers on N, I	P, K concentrations of	plants and	fruits and
vitamin C contents fruits of okra.				

-	N, P and K concentrations (g% of dry weight basis)							Vitamin C	
Treatments	Ν		Р		K		Total		(mg/100g)
	Plants	Fruits	Plants	Fruits	Plants	Fruits	Plants	Fruits	
T ₀	1.40a	2.00a	1.57a	1.88ab	0.64a	1.40	3.61a	5.28a	20.30a
T_1	2.03c	2.87c	2.05e	1.93ab	1.16c	1.48	5.24c	6.28c	24.60d
T_2	1.84b	3.22d	2.00d	2.08b	1.37d	1.40	5.21c	6.70d	23.80c
T_3	3.08e	3.32e	1.93c	2.16b	1.13c	1.43	6.14d	6.91e	23.80c
T_4	2.52d	2.66b	1.76b	1.72a	0.75b	1.43	5.03b	5.81b	22.00b

Mean followed by same letter(s) did not differ significantly at 5% level.

From the above discussion it may be concluded that the growth, yield and yield attributes of okra were highest in T_1 where balanced dose of NPK fertilizers was applied. So, T_1 may be recommended for the growers for better yield of okra.

References

- Ahmed N and Tullock-Reid LT 1986. The combined effect of NPK fertilizers for the increase of yield of okra Agron. J. **60**: 353-356.
- BBS (Bangladesh Bureau of Statistics) 2000. Monthly Statistical Bulletin of Bangladesh (October). Bangladesh Bureau of Statistics, Ministry of Planning. Government of the People's Republic of Bangladesh, Dhaka.
- Firoz ZA 2009. Impact of nitrogen and phosphorus on the growth and yield of okra (*Abelmoschus esculentus* (L.) Moench.) in hill slope condition. Bangladesh J. Agril. Res. **34**(4): 713-722.
- Hooda RS, Pandita ML and Sidhu AS 1980. Studies on the effect of nitrogen and phosphorus on growth and green pod yield of okra. Haryanra J. Hort. Sci. 9: 180-183.

Jackson ML 1973. Soil Chemical Analysis. Prentice Hall of India.

- Katung MD, Olanrewaju JD, Gupta US and Kureh I 1996. Fruit and seed yields of okra as influenced by farmyard manure and nitrogen fertilizer. *In:* Proc. 14th HORTSON Cent; Ago Iwoye, 1-4 April, 1996.
- Majanbu IS, Ogunlela VB, Ahmed MK and Olarewarju JD 1985. Response of two okra varieties to fertilizers on the yield and yield components as influenced by nitrogen and phosphorus application. Fert. Res. **6**(3): 257-267.
- Mani S and Ramnathan KM 1980. Effect of nitrogen and phosphorus on the yield of bhindi fruits. South Indian Hort. **20**: 136-138.
- Philip CB, Sajo AA and Futuless KN 2010. Effect of spacing and NPK fertilizer on the yield and yield components of okra (*Abelmoschus esculentus* (L. Moench.) in Mubi, Adamawa State, Nigeria. J. Agron. 9: 131-134.
- Pleshkov BP 1976. Practical Methods of Plant Biochemistry. Moscow (Russ.). pp. 106.
- Sharma BM and Yadev JPS 1976. Availability of phosphorus to grain as influenced by phosphatic fertilization and irrigation. Indian J. Agric. Sci. **46**: 205-210.
- Singh IP 1995. Effect of various doses of nitrogen on seed yield and quality of okra. Ann. Agril. Res. **16**(2): 227-229.
- Wettstein D 1957. Formula of chlorophyll determination. Exp. Cell. Res. 12(3):427-487.
- Yamaguchi M 1998. World Vegetables: Principles, production and nutritive values. Van Nostrand Reinhold. New York, USA. p. 415.

(Manuscript received on 3 April, 2012; revised on 2 May, 2012)